Reference list for my most recent preprint with regards to SARS-CoV-2 and HIV-1 likely major similarities
This post is related to my previous one.
Featured image: By No machine-readable author provided. Dr. Marcus Gossler~commonswiki assumed (based on copyright claims). - No machine-readable source provided. Own work assumed (based on copyright claims)., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=354337
References:
Illanes-Álvarez, F., Márquez-Ruiz, D., Márquez-Coello, M., Cuesta-Sancho, S., & Girón-González, J. A. (2021). Similarities and differences between HIV and SARS-CoV-2. International journal of medical sciences, 18(3), 846–851. https://doi.org/10.7150/ijms.50133
Büttiker, P., Stefano, G. B., Weissenberger, S., Ptacek, R., Anders, M., Raboch, J., & Kream, R. M. (2022). HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae. Neuropsychiatric disease and treatment, 18, 2229–2237. https://doi.org/10.2147/NDT.S382308
Riou, C., du Bruyn, E., Stek, C., Daroowala, R., Goliath, R. T., Abrahams, F., Said-Hartley, Q., Allwood, B. W., Hsiao, N. Y., Wilkinson, K. A., Arlehamn, C. S. L., Sette, A., Wasserman, S., Wilkinson, R. J., & HIATUS consortium (2021). Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. The Journal of clinical investigation, 131(12), e149125. https://doi.org/10.1172/JCI149125
Kim, E. H., Nguyen, T. Q., Casel, M. A. B., Rollon, R., Kim, S. M., Kim, Y. I., Yu, K. M., Jang, S. G., Yang, J., Poo, H., Jung, J. U., & Choi, Y. K. (2022). Coinfection with SARS-CoV-2 and Influenza A Virus Increases Disease Severity and Impairs Neutralizing Antibody and CD4+ T Cell Responses. Journal of virology, 96(6), e0187321. https://doi.org/10.1128/jvi.01873-21
Demoliou, C., Papaneophytou, C., & Nicolaidou, V. (2022). SARS-CoV-2 and HIV-1: So Different yet so Alike. Immune Response at the Cellular and Molecular Level. International journal of medical sciences, 19(12), 1787–1795. https://doi.org/10.7150/ijms.73134
Naidoo, N., Moodley, J., Khaliq, O. P., & Naicker, T. (2022). Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review. Virus research, 319, 198880. https://doi.org/10.1016/j.virusres.2022.198880
Witvrouwen, I., Mannaerts, D., Ratajczak, J., Boeren, E., Faes, E., Van Craenenbroeck, A. H., Jacquemyn, Y., & Van Craenenbroeck, E. M. (2021). MicroRNAs targeting VEGF are related to vascular dysfunction in preeclampsia. Bioscience reports, 41(8), BSR20210874. https://doi.org/10.1042/BSR20210874
Fischer, W., Giorgi, E. E., Chakraborty, S., Nguyen, K., Bhattacharya, T., Theiler, J., Goloboff, P. A., Yoon, H., Abfalterer, W., Foley, B. T., Tegally, H., San, J. E., de Oliveira, T., Network for Genomic Surveillance in South Africa (NGS-SA), Gnanakaran, S., & Korber, B. (2021). HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell host & microbe, 29(7), 1093–1110. https://doi.org/10.1016/j.chom.2021.05.012
Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. C., O'Mahony, L., Gao, Y., Nadeau, K., & Akdis, C. A. (2020). Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 75(7), 1564–1581. https://doi.org/10.1111/all.14364
Wainberg M. A. (2004). HIV-1 subtype distribution and the problem of drug resistance. AIDS (London, England), 18 Suppl 3, S63–S68. https://doi.org/10.1097/00002030-200406003-00012
Abel, T., Moodley, J., Khaliq, O. P., & Naicker, T. (2022). Vascular Endothelial Growth Factor Receptor 2: Molecular Mechanism and Therapeutic Potential in Preeclampsia Comorbidity with Human Immunodeficiency Virus and Severe Acute Respiratory Syndrome Coronavirus 2 Infections. International journal of molecular sciences, 23(22), 13752. https://doi.org/10.3390/ijms232213752
Witvrouwen, I., Mannaerts, D., Ratajczak, J., Boeren, E., Faes, E., Van Craenenbroeck, A. H., Jacquemyn, Y., & Van Craenenbroeck, E. M. (2021). MicroRNAs targeting VEGF are related to vascular dysfunction in preeclampsia. Bioscience reports, 41(8), BSR20210874. https://doi.org/10.1042/BSR20210874
Tarasova, O., Ivanov, S., Filimonov, D. A., & Poroikov, V. (2020). Data and Text Mining Help Identify Key Proteins Involved in the Molecular Mechanisms Shared by SARS-CoV-2 and HIV-1. Molecules (Basel, Switzerland), 25(12), 2944. https://doi.org/10.3390/molecules25122944
Lesko, C. R., & Bengtson, A. M. (2021). HIV and COVID-19: Intersecting Epidemics With Many Unknowns. American journal of epidemiology, 190(1), 10–16. https://doi.org/10.1093/aje/kwaa158
Favara, G., Barchitta, M., Maugeri, A., Faro, G., & Agodi, A. (2022). HIV infection does not affect the risk of death of COVID-19 patients: A systematic review and meta-analysis of epidemiological studies. Journal of global health, 12, 05036. https://doi.org/10.7189/jogh.12.05036
Lee, K. W., Yap, S. F., Ngeow, Y. F., & Lye, M. S. (2021). COVID-19 in People Living with HIV: A Systematic Review and Meta-Analysis. International journal of environmental research and public health, 18(7), 3554. https://doi.org/10.3390/ijerph18073554
Gatechompol, S., Avihingsanon, A., Putcharoen, O., Ruxrungtham, K., & Kuritzkes, D. R. (2021). COVID-19 and HIV infection co-pandemics and their impact: a review of the literature. AIDS research and therapy, 18(1), 28. https://doi.org/10.1186/s12981-021-00335-1
Barbera, L. K., Kamis, K. F., Rowan, S. E., Davis, A. J., Shehata, S., Carlson, J. J., Johnson, S. C., & Erlandson, K. M. (2021). HIV and COVID-19: review of clinical course and outcomes. HIV research & clinical practice, 22(4), 102–118. https://doi.org/10.1080/25787489.2021.1975608
Sun, N., & Yau, S. S. (2022). In-depth investigation of the point mutation pattern of HIV-1. Frontiers in cellular and infection microbiology, 12, 1033481. https://doi.org/10.3389/fcimb.2022.1033481
Patel, R. H., Acharya, A., Chand, H. S., Mohan, M., & Byrareddy, S. N. (2021). Human Immunodeficiency Virus and Severe Acute Respiratory Syndrome Coronavirus 2 Coinfection: A Systematic Review of the Literature and Challenges. AIDS research and human retroviruses, 37(4), 266–282. https://doi.org/10.1089/AID.2020.0284
Tarcsai, K. R., Corolciuc, O., Tordai, A., & Ongrádi, J. (2022). SARS-CoV-2 infection in HIV-infected patients: potential role in the high mutational load of the Omicron variant emerging in South Africa. GeroScience, 44(5), 2337–2345. https://doi.org/10.1007/s11357-022-00603-6
Kuklina E. M. (2022). T Lymphocytes as Targets for SARS-CoV-2. Biochemistry. Biokhimiia, 87(6), 566–576. https://doi.org/10.1134/S0006297922060086
Shen, X. R., Geng, R., Li, Q., Chen, Y., Li, S. F., Wang, Q., Min, J., Yang, Y., Li, B., Jiang, R. D., Wang, X., Zheng, X. S., Zhu, Y., Jia, J. K., Yang, X. L., Liu, M. Q., Gong, Q. C., Zhang, Y. L., Guan, Z. Q., Li, H. L., … Zhou, P. (2022). ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal transduction and targeted therapy, 7(1), 83. https://doi.org/10.1038/s41392-022-00919-x
Sigalov A. B. (2022). SARS-CoV-2 may affect the immune response via direct inhibition of T cell receptor: Mechanistic hypothesis and rationale. Biochimie, 195, 86–89. https://doi.org/10.1016/j.biochi.2021.11.005
Garmendia, J. V., García, A. H., De Sanctis, C. V., Hajdúch, M., & De Sanctis, J. B. (2022). Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Current issues in molecular biology, 45(1), 33–50. https://doi.org/10.3390/cimb45010003
Dotan, A., Muller, S., Kanduc, D., David, P., Halpert, G., & Shoenfeld, Y. (2021). The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmunity reviews, 20(4), 102792. https://doi.org/10.1016/j.autrev.2021.102792
Mobasheri, L., Nasirpour, M. H., Masoumi, E., Azarnaminy, A. F., Jafari, M., & Esmaeili, S. A. (2022). SARS-CoV-2 triggering autoimmune diseases. Cytokine, 154, 155873. https://doi.org/10.1016/j.cyto.2022.155873
Di Simone, M., Corsale, A. M., Lo Presti, E., Scichilone, N., Picone, C., Giannitrapani, L., Dieli, F., & Meraviglia, S. (2022). Phenotypical and Functional Alteration of γδ T Lymphocytes in COVID-19 Patients: Reversal by Statins. Cells, 11(21), 3449. https://doi.org/10.3390/cells11213449
Li, H., Chaudhry, S., Poonia, B., Shao, Y., & Pauza, C. D. (2013). Depletion and dysfunction of Vγ2Vδ2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cellular & molecular immunology, 10(1), 42–49. https://doi.org/10.1038/cmi.2012.50
, A. A., Pollakis, G., Linnemann, T., Paxton, W. A., & de Baar, M. P. (2007). Statins disrupt CCR5 and RANTES expression levels in CD4(+) T lymphocytes in vitro and preferentially decrease infection of R5 versus X4 HIV-1. PloS one, 2(5), e470. https://doi.org/10.1371/journal.pone.0000470
, E. A., Jaimes, F. A., Rugeles, M. T., & Montoya, C. J. (2013). In vivo effect of statins on the expression of the HIV co-receptors CCR5 and CXCR4. AIDS research and therapy, 10, 10. https://doi.org/10.1186/1742-6405-10-10
Hsieh, S. M., Pan, S. C., Huang, Y. S., & Chang, S. C. (2021). Reversal of Viral Latency and Induction of Gag-Specific T-Cell Responses in HIV-1-Infected Adults Through Cyclic Treatment Interruption of Rosuvastatin: A Proof-of-Concept Study. Journal of acquired immune deficiency syndromes (1999), 86(4), 500–508. https://doi.org/10.1097/QAI.0000000000002577
Gilbert, C., Bergeron, M., Méthot, S., Giguère, J. F., & Tremblay, M. J. (2005). Statins could be used to control replication of some viruses, including HIV-1. Viral immunology, 18(3), 474–489. https://doi.org/10.1089/vim.2005.18.474
DaFonseca, S., Niessl, J., Pouvreau, S., Wacleche, V. S., Gosselin, A., Cleret-Buhot, A., Bernard, N., Tremblay, C., Jenabian, M. A., Routy, J. P., & Ancuta, P. (2015). Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology, 12, 38. https://doi.org/10.1186/s12977-015-0164-6
Salwe, S., Padwal, V., Nagar, V., Patil, P., & Patel, V. (2019). T cell functionality in HIV-1, HIV-2 and dually infected individuals: correlates of disease progression and immune restoration. Clinical and experimental immunology, 198(2), 233–250. https://doi.org/10.1111/cei.13342
Allers, K., Puyskens, A., Epple, H. J., Schürmann, D., Hofmann, J., Moos, V., & Schneider, T. (2016). The effect of timing of antiretroviral therapy on CD4+ T-cell reconstitution in the intestine of HIV-infected patients. Mucosal immunology, 9(1), 265–274. https://doi.org/10.1038/mi.2015.58
Costiniuk, C. T., & Angel, J. B. (2012). Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity?. Mucosal immunology, 5(6), 596–604. https://doi.org/10.1038/mi.2012.82
Nastri, B. M., Zannella, C., Folliero, V., Rinaldi, L., Restivo, L., Stelitano, D., Sperlongano, R., Adinolfi, L. E., & Franci, G. (2020). Editorial - Role of Highly Active Antiretroviral Therapy (HAART) for the COVID-19 treatment. European review for medical and pharmacological sciences, 24(22), 11982–11984. https://doi.org/10.26355/eurrev_202011_23861
Carp T, Metoudi M. Low-Dose Interferon I and III-Based Nasal Sprays: A Good-Looking COVID-19 Vaccine Candidate?. Preprints.org; 2022. DOI: 10.20944/preprints202212.0155.v2
Setaro, A. C., & Gaglia, M. M. (2021). All hands on deck: SARS-CoV-2 proteins that block early anti-viral interferon responses. Current research in virological science, 2, 100015. https://doi.org/10.1016/j.crviro.2021.100015
Rashid, F., Xie, Z., Suleman, M., Shah, A., Khan, S., & Luo, S. (2022). Roles and functions of SARS-CoV-2 proteins in host immune evasion. Frontiers in immunology, 13, 940756. https://doi.org/10.3389/fimmu.2022.940756
Zhang, L., Li, Q., Liang, Z., Li, T., Liu, S., Cui, Q., Nie, J., Wu, Q., Qu, X., Huang, W., & Wang, Y. (2022). The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerging microbes & infections, 11(1), 1–5. https://doi.org/10.1080/22221751.2021.2017757
Raghavan, S., Kenchappa, D. B., & Leo, M. D. (2021, May 19). SARS-COV-2 spike protein induces degradation of junctional proteins that maintain endothelial barrier integrity. Frontiers. Retrieved December 5, 2022, from https://www.frontiersin.org/articles/10.3389/fcvm.2021.687783/full
Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S., & Nemati, M. (2020). Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life sciences, 257, 118102. https://doi.org/10.1016/j.lfs.2020.118102
Brown, M., & Bhardwaj, N. (2021). Super(antigen) target for SARS-CoV-2. Nature reviews. Immunology, 21(2), 72. https://doi.org/10.1038/s41577-021-00502-5
Huang, Y., Xie, J., Guo, Y., Sun, W., He, Y., Liu, K., Yan, J., Tao, A., & Zhong, N. (2021). SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses. Healthcare (Basel, Switzerland), 9(9), 1132. https://doi.org/10.3390/healthcare9091132
Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., Rawlings, S.A., Sutherland, A., Premkumar, L., Jadi, R.S., Marrama, D., de Silva, A.M., Frazier, A., Carlin, A.F., Greenbaum, J.A., Peters, B., Krammer, F., Smith, D.M., Crotty, S., & Sette, A. (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 181(7):1489-1501.e15. https://doi.org/10.1016/j.cell.2020.05.015
Mary Hongying Cheng, She Zhang, Rebecca A. Porritt, Magali Noval Rivas, Lisa Paschold, Edith Willscher, Mascha Binder, Mosche Arditi and Ivet Bahar (2020), Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation, Proceedings of the National Academy of Sciences of the United States of America, 117(41), pp 25254-25262, doi: https://doi.org/10.1073/pnas.2010722117
Bruttel, V., Washburne, A., & VanDongen, A. (2022). Endonuclease fingerprint indicates a synthetic origin of SARS-COV-2. https://doi.org/10.1101/2022.10.18.512756
Fleming, D.R.M. (2021). Is COVID-19 a Bioweapon?: A Scientific and Forensic investigation. Skyhorse Publishing (NY). ISBN 978-1-5107-7019-5
Lyons-Weiler, J. (2020). Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoim, 3: 100051. https://doi.org/10.1016/j.jtauto.2020.100051
Moser, D., Biere, K., Han, B., Hoerl, M., Schelling, G., Choukér, A., & Woehrle, T. (2021). COVID-19 Impairs Immune Response to Candida albicans. Frontiers in immunology, 12, 640644. https://doi.org/10.3389/fimmu.2021.640644
Yu, W., Wu, X., Zhao, Y., Chen, C., Yang, Z., Zhang, X., Ren, J., Wang, Y., Wu, C., Li, C., Chen, R., Wang, X., Zheng, W., Liao, H., & Yuan, X. (2021). Computational Simulation of HIV Protease Inhibitors to the Main Protease (Mpro) of SARS-CoV-2: Implications for COVID-19 Drugs Design. Molecules (Basel, Switzerland), 26(23), 7385. https://doi.org/10.3390/molecules26237385
Copertino, D. C., Jr, Casado Lima, B. C., Duarte, R. R. R., Powell, T. R., Ormsby, C. E., Wilkin, T., Gulick, R. M., de Mulder Rougvie, M., & Nixon, D. F. (2022). Antiretroviral drug activity and potential for pre-exposure prophylaxis against COVID-19 and HIV infection. Journal of biomolecular structure & dynamics, 40(16), 7367–7380. https://doi.org/10.1080/07391102.2021.1901144
Dallocchio, R. N., Dessì, A., De Vito, A., Delogu, G., Serra, P. A., & Madeddu, G. (2021). Early combination treatment with existing HIV antivirals: an effective treatment for COVID-19?. European review for medical and pharmacological sciences, 25(5), 2435–2448. https://doi.org/10.26355/eurrev_202103_25285
Magro, P., Zanella, I., Pescarolo, M., Castelli, F., & Quiros-Roldan, E. (2021). Lopinavir/ritonavir: Repurposing an old drug for HIV infection in COVID-19 treatment. Biomedical journal, 44(1), 43–53. https://doi.org/10.1016/j.bj.2020.11.005
Smolders, E. J., Te Brake, L. H., & Burger, D. M. (2020). SARS-CoV-2 and HIV protease inhibitors: why lopinavir/ritonavir will not work for COVID-19 infection. Antiviral therapy, 25(7), 345–347. https://doi.org/10.3851/IMP3365
Agarwal, S., & Agarwal, S. K. (2021). Lopinavir-Ritonavir in SARS-CoV-2 Infection and Drug-Drug Interactions with Cardioactive Medications. Cardiovascular drugs and therapy, 35(3), 427–440. https://doi.org/10.1007/s10557-020-07070-1
Agresti, N., Lalezari, J. P., Amodeo, P. P., Mody, K., Mosher, S. F., Seethamraju, H., Kelly, S. A., Pourhassan, N. Z., Sudduth, C. D., Bovinet, C., ElSharkawi, A. E., Patterson, B. K., Stephen, R., Sacha, J. B., Wu, H. L., Gross, S. A., & Dhody, K. (2021). Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case series of four critically ill patients treated with leronlimab. Journal of translational autoimmunity, 4, 100083. https://doi.org/10.1016/j.jtauto.2021.100083
de Leon, V.N.O., Manzano, J.A.H., Pilapil, D.Y.H. et al. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven non-structural proteins vital in SARS-CoV-2 pathogenesis. J Genet Eng Biotechnol 19, 104 (2021). https://doi.org/10.1186/s43141-021-00206-2
Knipping, F., Newby, G. A., Eide, C. R., McElroy, A. N., Nielsen, S. C., Smith, K., Fang, Y., Cornu, T. I., Costa, C., Gutierrez-Guerrero, A., Bingea, S. P., Feser, C. J., Steinbeck, B., Hippen, K. L., Blazar, B. R., McCaffrey, A., Mussolino, C., Verhoeyen, E., Tolar, J., Liu, D. R., … Osborn, M. J. (2022). Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human T cells and hematopoietic stem and progenitor cells using base editing. Molecular therapy : the journal of the American Society of Gene Therapy, 30(1), 130–144. https://doi.org/10.1016/j.ymthe.2021.10.026
Guryanov, I., Real-Fernández, F., Sabatino, G., Prisco, N., Korzhikov-Vlakh, V., Biondi, B., Papini, A. M., Korzhikova-Vlakh, E., Rovero, P., & Tennikova, T. (2019). Modeling interaction between gp120 HIV protein and CCR5 receptor. Journal of peptide science : an official publication of the European Peptide Society, 25(2), e3142. https://doi.org/10.1002/psc.3142
Patterson, B. K., Seethamraju, H., Dhody, K., Corley, M. J., Kazempour, K., Lalezari, J. P., Pang, A. P., Sugai, C., Francisco, E. B., Pise, A., Rodrigues, H., Ryou, M., Wu, H. L., Webb, G. M., Park, B. S., Kelly, S., Pourhassan, N., Lelic, A., Kdouh, L., Herrera, M., … Sacha, J. B. (2020). Disruption of the CCL5/RANTES-CCR5 Pathway Restores Immune Homeostasis and Reduces Plasma Viral Load in Critical COVID-19. medRxiv : the preprint server for health sciences, 2020.05.02.20084673. https://doi.org/10.1101/2020.05.02.20084673
Blanpain, C., Libert, F., Vassart, G., & Parmentier, M. (2002). CCR5 and HIV infection. Receptors & channels, 8(1), 19–31.
Ribeiro, R. M., Hazenberg, M. D., Perelson, A. S., & Davenport, M. P. (2006). Naïve and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: implications for therapy. Journal of virology, 80(2), 802–809. https://doi.org/10.1128/JVI.80.2.802-809.2006
Lambertini, A., Hartrampf, P. E., Higuchi, T., Serfling, S. E., Meybohm, P., Schirbel, A., Buck, A. K., & Werner, R. A. (2022). CXCR4-targeted molecular imaging after severe SARS-Cov-2 infection. European journal of nuclear medicine and molecular imaging, 50(1), 228–229. https://doi.org/10.1007/s00259-022-05932-4
Lourda, M., Dzidic, M., Hertwig, L., Bergsten, H., Palma Medina, L. M., Sinha, I., Kvedaraite, E., Chen, P., Muvva, J. R., Gorin, J. B., Cornillet, M., Emgård, J., Moll, K., García, M., Maleki, K. T., Klingström, J., Michaëlsson, J., Flodström-Tullberg, M., Brighenti, S., Buggert, M., … Karolinska KI/K COVID-19 Study Group (2021). High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 118(40), e2109123118. https://doi.org/10.1073/pnas.2109123118
Song, D., Adrover, J. M., Felice, C., Christensen, L. N., He, X. Y., Merrill, J. R., Wilkinson, J. E., Janowitz, T., Lyons, S. K., Egeblad, M., & Tonks, N. K. (2022). PTP1B inhibitors protect against acute lung injury and regulate CXCR4 signaling in neutrophils. JCI insight, 7(14), e158199. https://doi.org/10.1172/jci.insight.158199
Daoud, S., & Taha, M. (2022). Ligand-based Modeling of CXC Chemokine Receptor 4 and Identification of Inhibitors of Novel Chemotypes as Potential Leads towards New Anti- COVID-19 Treatments. Medicinal chemistry (Shariqah (United Arab Emirates)), 18(8), 871–883. https://doi.org/10.2174/1573406418666220118153541
Patterson, B. K., Seethamraju, H., Dhody, K., Corley, M. J., Kazempour, K., Lalezari, J., Pang, A. P. S., Sugai, C., Mahyari, E., Francisco, E. B., Pise, A., Rodrigues, H., Wu, H. L., Webb, G. M., Park, B. S., Kelly, S., Pourhassan, N., Lelic, A., Kdouh, L., Herrera, M., … Sacha, J. B. (2021). CCR5 inhibition in critical COVID-19 patients decreases inflammatory cytokines, increases CD8 T-cells, and decreases SARS-CoV2 RNA in plasma by day 14. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 103, 25–32. https://doi.org/10.1016/j.ijid.2020.10.101
Elneil, S., Lalezari, J. P., & Pourhassan, N. Z. (2021). Case study of a critically ill person with COVID-19 on ECMO successfully treated with leronlimab. Journal of translational autoimmunity, 4, 100097. https://doi.org/10.1016/j.jtauto.2021.100097
Tan, Q., Zhu, Y., Li, J., Chen, Z., Han, G. W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, J., Zhang, W., Xie, X., Yang, H., Jiang, H., Cherezov, V., Liu, H., Stevens, R. C., Zhao, Q., & Wu, B. (2013). Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science (New York, N.Y.), 341(6152), 1387–1390. https://doi.org/10.1126/science.1241475
Basha, G. M., Parulekar, R. S., Al-Sehemi, A. G., Pannipara, M., Siddaiah, V., Kumari, S., Choudhari, P. B., & Tamboli, Y. (2022). Design and in silico investigation of novel Maraviroc analogues as dual inhibition of CCR-5/SARS-CoV-2 Mpro. Journal of biomolecular structure & dynamics, 40(21), 11095–11110. https://doi.org/10.1080/07391102.2021.1955742
Ancy, I., Sivanandam, M., & Kumaradhas, P. (2021). Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study. Journal of biomolecular structure & dynamics, 39(15), 5368–5375. https://doi.org/10.1080/07391102.2020.1786459
Root-Bernstein R. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies. International Journal of Molecular Sciences. 2017; 18(10):2091. https://doi.org/10.3390/ijms18102091
Campbell, G. R., To, R. K., Hanna, J., & Spector, S. A. (2021). SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience, 24(4), 102295. https://doi.org/10.1016/j.isci.2021.102295
Campbell, G. R., Rawat, P., & Spector, S. A. (2022). Pacritinib Inhibition of IRAK1 Blocks Aberrant TLR8 Signalling by SARS-CoV-2 and HIV-1-Derived RNA. Journal of innate immunity, 1–11. Advance online publication. https://doi.org/10.1159/000525292
Abramczyk, H., Brozek-Pluska, B., & Beton, K. (2022). Decoding COVID-19 mRNA Vaccine Immunometabolism in Central Nervous System: human brain normal glial and glioma cells by Raman imaging. bioRxiv.
Martinez, G. P., Zabaleta, M. E., Di Giulio, C., Charris, J. E., & Mijares, M. R. (2020). The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Current pharmaceutical design, 26(35), 4467–4485. https://doi.org/10.2174/1381612826666200707132920
Yu, B., Li, C., Chen, P., Zhou, N., Wang, L., Li, J., Jiang, H., & Wang, D. W. (2020). Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Science China. Life sciences, 63(10), 1515–1521. https://doi.org/10.1007/s11427-020-1732-2
Lagier, J. C., Million, M., Gautret, P., Colson, P., Cortaredona, S., Giraud-Gatineau, A., Honoré, S., Gaubert, J. Y., Fournier, P. E., Tissot-Dupont, H., Chabrière, E., Stein, A., Deharo, J. C., Fenollar, F., Rolain, J. M., Obadia, Y., Jacquier, A., La Scola, B., Brouqui, P., Drancourt, M., … IHU COVID-19 Task force (2020). Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis. Travel medicine and infectious disease, 36, 101791. https://doi.org/10.1016/j.tmaid.2020.101791
Torres, K. J., Reyes-Terán, G., Sotelo, J., Jung-Cook, H., & Aguirre-Cruz, L. (2015). Influence of quinacrine and chloroquine on the in vitro 3'-azido-3'-deoxythymidine antiretroviral effect. AIDS research and therapy, 12, 7. https://doi.org/10.1186/s12981-015-0048-9
Lehrer, S., & Rheinstein, P. H. (2020). Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2. In vivo (Athens, Greece), 34(5), 3023–3026. https://doi.org/10.21873/invivo.12134
Kinobe, R. T., & Owens, L. (2021). A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin's possible mode of action against SARS-CoV-2. Fundamental & clinical pharmacology, 35(2), 260–276. https://doi.org/10.1111/fcp.12644
Jans, D. A., & Wagstaff, K. M. (2020). Ivermectin as a Broad-Spectrum Host-Directed Antiviral: The Real Deal?. Cells, 9(9), 2100. https://doi.org/10.3390/cells9092100
Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D., & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. The Biochemical journal, 443(3), 851–856. https://doi.org/10.1042/BJ20120150
Zhang, L., Richards, A., Khalil, A., Wogram, E., Ma, H., Young, R. A., & Jaenisch, R. (2020). SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. bioRxiv : the preprint server for biology, 2020.12.12.422516. https://doi.org/10.1101/2020.12.12.422516
Aldén M, Olofsson Falla F, Yang D, Barghouth M, Luan C, Rasmussen M, De Marinis Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Current Issues in Molecular Biology. 2022; 44(3):1115-1126. https://www.mdpi.com/1467-3045/44/3/73/htm
Luisetto, M., Almukthar, N., & Tarro, G., Intracellular Reverse Transcription of COVID-19 mRNA Vaccine, LAP LAMBERT Academic Publishing. 2022; 1, 3-67. ISBN: 978-620-0-31572-4
Fertig TE, Chitoiu L, Marta DS, Ionescu V-S, Cismasiu VB, Radu E, Angheluta G, Dobre M, Serbanescu A, Hinescu ME, Gherghiceanu M. Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines. 2022; 10(7):1538. https://doi.org/10.3390/biomedicines10071538
Rodríguez, Y., Rojas, M., Beltrán, S., Polo, F., Camacho-Domínguez, L., Morales, S. D., Gershwin, M. E., & Anaya, J. M. (2022). Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. Journal of autoimmunity, 132, 102898. https://doi.org/10.1016/j.jaut.2022.102898
Leone, M. C., Canovi, S., Pilia, A., Casali, A., Depietri, L., Fasano, T., Colla, R., & Ghirarduzzi, A. (2022). Four cases of acquired hemophilia A following immunization with mRNA BNT162b2 SARS-CoV-2 vaccine. Thrombosis research, 211, 60–62. https://doi.org/10.1016/j.thromres.2022.01.017
Chiu, S. N., Chen, Y. S., Hsu, C. C., Hua, Y. C., Tseng, W. C., Lu, C. W., Lin, M. T., Chen, C. A., Wu, M. H., Chen, Y. T., Chien, T. H., Tseng, C. L., & Wang, J. K. (2023). Changes of ECG parameters after BNT162b2 vaccine in the senior high school students. European journal of pediatrics, 1–8. Advance online publication. https://doi.org/10.1007/s00431-022-04786-0
[Retracted, but may be important for investigation] Pradhan P, Pandey AK, Mishra A, et al. Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. bioRxiv; 2020. https://doi.org/10.1101/2020.01.30.927871.